Chemistry **Higher level** Paper 1A

.8

16 May 2025

Zone A afternoon Zone B afternoon Zone C afternoon

2 hours [Paper 1A and Paper 1B]

Instructions to candidates

- Do not open this examination paper until instructed to do so. ٠
- Answer all questions. .
- ٠ the answer sheet provided.

Diploma Programme Programme du diplôme Programa del Diploma

·*

•

For each question, choose the answer you consider to be the best and indicate your choice on

⊕.

1.

What is the correct identity of each particle?

The diagram below shows the behaviour of protons, neutrons and electrons in an electric field.

ons	Neutrons
	X
	Z
	У
	У

		/	
C.	Z	X	У
D.	x	Z	У

 Which of the following species have the same number of outer electrons? The letters do not represent symbols of elements.

$$^{24}_{12}W^{2+}$$
 $^{31}_{16}X^{-}$ $^{45}_{21}Y^{2+}_{21}$

- A. X and Y
- B. X and W
- C. Z and Y
- D. Z and W

Which chart shows the neutralization curve of a strong base with a strong acid? 3.

Volume of alkali added

4.

Which row shows a gas that would deviate the least from ideal gas behaviour? 5.

	Gas	Pressure	Temperature
A.	Phosphine, PH ₃	Low	High
B.	Ammonia, NH₃	Low	High
C.	Phosphine, PH ₃	High	Low
D.	Ammonia, NH ₃	High	Low

Which of the following correctly shows the shape of s and p orbitals? 6.

 1	3	0	

6. Which of the following correctly shows the shape of s and p orbitals?

8. Diagrams of four stable allotropes of carbon are shown. Which row correctly identifies each structure?

.

ne	Graphite	Diamond
	X	W

ne	Graphite	Diamond
	Х	W
	Y	Х
	Z	Y
	W	Z

D.	Y	Х	W	Z

9. In which of the following molecules do all atoms obey the octet rule?

- I. NF₃
- II. BF₃
- III. PCl₃
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Nitrogen(I) oxide, N₂O, can be represented by two Lewis formulas. 10.

Structure X

Which row correctly identifies the formal charges and the more stable structure?

Structure Y

B.	-1	+1	0	+1	0	-1	X
C.	0	+1	-1	-1	0	+1	Y
D.	-1	0	+1	0	+1	-1	Υ

Which row puts these molecules in order of decreasing bond angle? 11.

- NH₃, H₂O, C₂H₄, CH₄ A.
- Β. H_2O, C_2H_4, CH_4, NH_3
- C. C_2H_4 , CH_4 , NH_3 , H_2O
- D. CH_4 , NH_3 , H_2O , C_2H_4

12. mobile phase. •

The following thin-layer chromatogram was obtained from a mixture of naphthalene, C10H8, and naphthol, C10H8O. A polar silica was used as the stationary phase, and a non-polar hexane as the

What are the position and retardation factor ($R_{\rm F}$) of naphthalene?

- A. y and 0.50
- B. y and 0.58
- C. x and 0.80
- D. x and 0.83

- Kekulé suggested a structure of benzene with alternating single and double bonds. 13. Which piece of evidence disproves this structure?
 - Benzene has the formula C₆H₆. Α.
 - Benzene is an unsaturated molecule. Β.
 - All C–C bonds have the same length. C.
 - Benzene can be hydrogenated. D.
- 14. of increasing radius?
 - Ge4+, Ge2+, Ge, Ge4-. A.
 - Ge⁴⁻, Ge⁴⁺, Ge²⁺, Ge. Β.
 - Ge, Ge⁴⁻, Ge⁴⁺, Ge²⁺. C.
 - Ge²⁺, Ge, Ge⁴⁻, Ge⁴⁺. D.

Germanium has several stable oxidation states. Which row shows these species in order

15. Which statement explains the trend in first ionisation energy from sodium, Na, to chlorine, Cl?

- 15.
 - Nuclear charge increases. Α.
 - Electronegativity decreases. В.
 - Atomic radius increases. C.
 - Shielding decreases. D.
- Which elements would react with each other most vigorously? 16.
 - K(s) and Br₂(g). Α.
 - K(s) and $Cl_2(g)$. Β.
 - Na(s) and Br₂(g). C.
 - Na(s) and Cl₂(g). D.

Which statement explains the trend in first ionisation energy from sodium, Na, to chlorine, Cl?

- 17. temperature. How does this affect the pressure in a container? pV = nRT
 - Pressure increases by 100% Α.
 - Pressure decreases by 100% Β.
 - Pressure increases by 50% C.
 - Pressure decreases by 50% D.
- 18. Which statement explains why transition elements have variable oxidation states?
 - d-Electrons are delocalized. Α.
 - All have a +2 oxidation state. Β.
 - They can accept electron pairs from ligands. C.
 - Successive ionization energies are close in value. D.

The volume of a container filled with a fixed amount of gas is increased by 100% at constant

.

Ð.

19. Which oxygen-containing molecule has this low-resolution ¹H NMR spectrum?

- A. Butanoic acid
- B. Ethyl ethanoate
- C. Methyl propanoate
- D. Butanone

Consider this molecule, deca-3,5,7-triene-2,9-dione. 20.

How many stereoisomers are possible for deca-3,5,7-triene-2,9-dione?

- 3 Α.
- Β. 6
- C. 8
- 9 D.
- What is a disadvantage of using infrared (IR) spectroscopy as a technique? 21.

- What is a disadvantage of using infrared (IR) spectroscopy as a technique? 21.
 - It cannot detect small atoms like H. Α.
 - It can only detect molar mass. Β.
 - C. It alters the chemical structure of the sample.
 - It can only identify bonds, not their position. D.
- 22. combustion, ΔH^{\ominus}_{c} , of its elements?
 - $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ Α.
 - Β. $\frac{1}{2}N_2(g) + \frac{1}{2}H_2(g) \rightarrow NH_3(g)$
 - $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$ C.
 - $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ D.

Which equation correctly shows **both** enthalpy of formation, ΔH^{\ominus}_{f} , of a compound and enthalpy of

23.

The initial temperature of the solution was 298K and the final temperature was 297K. What is the enthalpy of this reaction in kJ mol⁻¹? ($c_w = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$, $Q = mc\Delta T$)

- +4.18Α.
- Β. -4.18
- C. +12.5
- -12.5D.
- The table shows enthalpy of combustion data for several substances. 24.

0.050 mol of sodium hydrogencarbonate was added to 50 cm³ of 2.0 mol dm⁻³ solution of citric acid.

```
C_6H_8O_7(aq) + 3NaHCO_3(s) \rightarrow C_6H_5O_7Na_3(aq) + 3CO_2(g) + 3H_2O(l)
```

∆ <i>H</i> [⊖] _c (kJ mol⁻¹)
-1561
-1411
-286

0,

The table shows enthalpy of combustion data for several substances. 24.

Substance	ΔH^{\ominus}_{c} (kJ mol ⁻¹)	
C ₂ H ₆	-1561	
C ₂ H ₄	-1411	
H ₂	-286	

Which expression would give the enthalpy for the following reaction?

 $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

- -1561 + 286 1411Α.
- -1411 286 + 1561Β.
- -1411 + 286 + 1561C.
- -1561 286 1411 D.
- Which of the following reactions will have the largest positive change in entropy? 25.
 - N(--) = 0 = 0 | (--) + 1 | 0 | (--) + 0 | (--) |

-2.4(3) 2(3) 2 8(3)

- -1561 + 286 1411Α.
- -1411 286 + 1561Β.
- -1411 + 286 + 1561 C.
- -1561 286 -1411 D.
- Which of the following reactions will have the largest positive change in entropy? 25.
 - $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ Α.
 - $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$ Β.
 - $I_2(g) + H_2(g) \rightarrow 2HI(g)$ C.
 - $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ D.

Ð.

Chloroethane is produced by the reaction of ethane with chlorine. 26.

$$C_2H_6(g) + Cl_2(g)$$

($C_2H_6 = 30.08 \,g \,\text{mol}^{-1}$, $Cl_2 = 70.90 \,g \,\text{m}^{-1}$)
% atom economy = $\frac{mc}{m}$

What is the atom economy for this reaction?

- 15.7% Α.
- Β. 46.6%
- 63.9% C.
- 99.9% D.
- 27. following equation.

 $()) \cap ()$

 $(g) \rightarrow C_2 H_5 Cl(g) + HCl(g)$

 10^{-1} , $C_2H_5Cl = 64.52 \text{ g mol}^{-1}$, $HCl = 36.46 \text{ g mol}^{-1}$)

olar mass of desired product × 100 molar mass of all reactants

75 cm³ of propane was completely combusted in 400 cm³ of oxygen according to the

⊕.

- 63.9% C.
- 99.9% D.
- 27. following equation.

What is the volume of unreacted oxygen remaining at the original conditions?

- 25 cm³. Α.
- 50 cm³. Β.
- 75 cm³. C.
- 150 cm³. D.

75 cm³ of propane was completely combusted in 400 cm³ of oxygen according to the

```
CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)
```


Consider the following Maxwell-Boltzmann distribution. 28.

Which represents the distribution and value of activation energy at a lower temperature?

Which represents the distribution and value of activation energy at a lower temperature?

Kinetic energy

Consider the following system at equilibrium: 29.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Which row correctly describes the initial effect of a change in pressure on the equilibrium position and the relationship between Q and K?

	Change in pressure	Equilibrium shift	Relationship between Q and K
۸.	decrease	to the left	Q < K
	increase	to the left	Q > K
	decrease	to the right	Q > K
	increase	to the right	Q < K

 $\Delta H_r^{\ominus} = -46 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Ð.

30. propanone, CH₃COCH₃.

Experiment	Initial [CH ₃ COCH ₃] (mol dm ⁻³)	Initial [l ₂] (mol dm ⁻³)	Initial [H⁺] (mol dm⁻³)	Relative initial rate mol dm ⁻³ s ⁻¹
1	0.56	0.56	0.56	5.6×10^{-3}
2	0.28	0.56	0.28	1.4×10^{-3}
3	0.56	0.28	0.56	5.6 × 10 ⁻³
4	0.56	0.56	0.28	2.8 × 10 ⁻³

Which row gives the correct order of reaction for each reactant?

	CH3COCH3	I ₂	H⁺
A.	1	0	1
В.	1	1	0
с.	0	0	2
D.	0	1	1

The following results were obtained from the acid-catalysed reaction between iodine, I2, and

31. processed data, and the slope was calculated to be -6400.

The acid-catalysed reaction between iodine, I2, and propanone, CH3COCH3, was carried out at various temperatures to find the activation energy. The following graph was obtained from the

Ð.

L		111	
			-

Which expression gives the activation energy for this reaction?

In

A.
$$\frac{-6400 \times 1000}{R}$$
 kJ mol⁻¹

B.
$$\frac{6400 \times R}{1000}$$
 kJ mol⁻¹

C.
$$\frac{-6400 \times R}{1000} \text{ kJ mol}^{-1}$$

D.
$$\frac{6400 \times 1000}{R}$$
 kJ mol⁻¹

$$hk = \frac{-E_a}{RT} + \ln A$$

- 32.
 - H_3PO_4 and PO_4^{3-} . Α.
 - HPO_4^{2-} and $H_2PO_4^{-}$. Β.
 - HPO₄²⁻ and PO₄³⁻. C.
 - PO₄^{3−} and H₂PO₄[−]. D.
- 33.
 - 11 Α.
 - 10^{-3} Β.
 - 10 C.
 - 10-11 D.
- Ammonia, NH₃ and nitrous acid, HNO₂, are compounds of nitrogen. 34. What are the oxidation states of nitrogen in these compounds?

Which two species can be both BrØnsted-Lowry acids and BrØnsted-Lowry bases?

•

A solution has a pH of 3.0. What is the hydroxide ion concentration, [OH⁻], in the solution?

- C. 10
- 10-11 D.
- Ammonia, NH₃ and nitrous acid, HNO₂, are compounds of nitrogen. 34. What are the oxidation states of nitrogen in these compounds?

	NH ₃	HNC
Α.	+3	+3
В.	-3	-3
C.	+3	-3
D.	-3	+3
C.		

35.

Which reaction is spontaneous?

- $Cd^{2+}(aq) + Pb(s) \rightarrow Pb^{2+}(aq) + Cd(s)$ Α.
- $Fe^{2+}(aq) + Sn(s) \rightarrow Sn^{2+}(aq) + Fe(s)$ Β.
- $Zn^{2+}(aq) + Cu(s) \rightarrow Cu^{2+}(aq) + Zn(s)$ C.
- $Ni^{2+}(aq) + Co(s) \rightarrow Co^{2+}(aq) + Ni(s)$ D.
- 36.

Below is a reactivity series of selected elements, arranged from highest activity to lowest.

- Zn
- Fe
- Cd
- Co
- Ni
- Sn
- Pb
- Cu

Which alcohol and conditions would produce the highest yield of methylpropanoic acid?

⊕.

36.

	Alcohol	Conditions	
A.	2-methylpropan-2-ol	Reflux	
В.	2-methylpropan-1-ol	Reflux	
C.	2-methylpropan-2-ol	Distillation	
D.	2-methylpropan-1-ol	Distillation	

- Which correctly shows heterolytic bond fission? 37.
 - $Br \longrightarrow Br^+ + Br^-$ A. B. $Br \longrightarrow 2Br$ C. $Br \stackrel{\frown}{-} Br \rightarrow Br^+ + Br^-$ D. $Br - Br \rightarrow 2Br$

Which alcohol and conditions would produce the highest yield of methylpropanoic acid?

- **38.** What is the role of the CN^- ion in the reaction $C_3H_7Cl + KC_3$
 - A. Electrophile and Lewis base
 - B. Nucleophile and Lewis acid
 - C. Electrophile and Lewis acid
 - D. Nucleophile and Lewis base
- When an excess of ammonia was added to was obtained.

What is the role of the CN⁻ ion in the reaction of 1-chloropropane with excess KCN in ethanol?

 $C_3H_7Cl + KCN \rightarrow C_3H_7CN + KCl$

When an excess of ammonia was added to hydrochloric acid, the following neutralization curve

Volume of ammonia added

39. was obtained.

Which would be the best indicator for this titration?

	Indicator	pk _a
A.	Phenol red	7.9
В.	Bromothymol blue	7.0
C.	Phenolphthalein	9.6
D.	Bromocresol green	4.7

When an excess of ammonia was added to hydrochloric acid, the following neutralization curve

Volume of ammonia added

	Indicator	pk _a
A.	Phenol red	7.9
Β.	Bromothymol blue	7.0
C.	Phenolphthalein	9.6
D.	Bromocresol green	4.7

- Which species would take part in a substitution reaction with benzene? 40.
 - Cl_2 Α.
 - Cl• Β.
 - C. Cl+
 - D. Cl⁻

